บทที่ 3 Intro to quantum mechanics

Quantum Mechanical Model

Electron Clouds (Orbitals)

พู้ช่วยศาสตราจารย์จุหาวุฒิ จันทรมาสิ

หลักสูตรวิทยาศาสตรขัณฑิต สาขาวิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสวนดุสิต

Electron

What is Quantum Mechanics?

- Quantum mechanics is the field of physics that explains how subatomic objects simultaneously have the characteristics of both:
 - Particles—tiny pieces of matter, and
 - Waves—variations that transfer energy

Quantum Bits (Qubits)

- Any quantum particle that can be measured in two discrete states, and as such, could be used to represent information
 - E.g. a 0 or 1

Qubit Example

- The spin of an electron can be used as a Qubit
- For example:
 - An upwards spin could be used represent a 0
 - A downward spin could be used to represent 1

Angular Momentum

- The spin may not always be perfectly up or down, but angular
 - i.e. some combination of BOTH up-spin and down-spin

An Electron Microscope View Of Electron Spin

 The pointier the hat, the more upward the spin

General Quantum State Formula

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Quantum State

represented by Psi

(Psi is the 23rd letter of the Greek alphabet)

Alpha Ket 0

Alpha represents the amplitude of state 0

(Alpha is the first letter of the Greek alphabet)

Beta Ket 1

Beta represents the amplitude of state 1

(Beta is the second letter of the Greek alphabet)

Quantum State and Vectors

The Bloch Sphere: A 3D Qubit Representation

$$|\psi\rangle = 0.8|0\rangle + 0.6|1\rangle$$

.

Quantum Special Property: Superposition

 As long a Qubit is unobserved (i.e. unmeasured) it is in a "Superposition" of probabilities for 0 and 1

Quantum Special Property: Superposition

- As long a Qubit is unobserved (i.e. unmeasured) it is in a "Superposition" of probabilities for 0 and 1
- The instant a Qubit is measured, the superposition will collapse into one of the two discrete states

Quantum Special Property: Entanglement

- Entanglement is a physical relationship between Qubits where they react to a change in the other(s) state instantaneously regardless of how far they are apart
- Multiple qubits can become entangled with each other
 - The current record is 54

Quantum Special Property: Entanglement

- If an entangled qubit is measured, then entanglement is broken
- The discrete state of the entangled qubit will depend on the entanglement operation that was performed
 - the states may be the same, or
 - the states may be opposite (as shown in this example)
- The important point is that as one entangled qubit changes state, its counterpart(s) will instantaneously reflect that change

|1|

Quantum Special Property: No Cloning

Given: $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, Let $a = \alpha|0\rangle$ and $b = \beta|1\rangle$ $|\psi\rangle = (a + b)$

- It can be mathematically proven that it is impossible to clone a qubit
- The proof uses the logical method of "Proof by Contradiction"

Quantum state: $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ Simplified to: $|\psi\rangle = (a + b)$ Particle with a quantum state Particle with a 'blank' state For any given Transformation (T): T(a + b) = T(a) + T(b)Let us assume the transformation is a cloning operation

